Saikosaponin a Enhances Transient Inactivating Potassium Current in Rat Hippocampal CA1 Neurons

نویسندگان

  • Wei Xie
  • Yun Hong Yu
  • Yong Ping Du
  • Yun Yan Zhao
  • Chang Zheng Li
  • Lin Yu
  • Jian Hong Duan
  • Jun Ling Xing
چکیده

Saikosaponin a (SSa), a main constituent of the Chinese herb Bupleurum chinense DC., has been demonstrated to have antiepileptic activity. Recent studies have shown that SSa could inhibit NMDA receptor current and persistent sodium current. However, the effects of SSa on potassium (K(+)) currents remain unclear. In this study, we tested the effect of SSa on 4AP-induced epileptiform discharges and K(+) currents in CA1 neurons of rat hippocampal slices. We found that SSa significantly inhibited epileptiform discharges frequency and duration in hippocampal CA1 neurons in the 4AP seizure model in a dose-dependent manner with an IC 50 of 0.7  μ M. SSa effectively increased the amplitude of I Total and I A , significantly negative-shifted the activation curve, and positive-shifted steady-state curve of I A . However, SSa induced no significant changes in the amplitude and activation curve of I K . In addition, SSa significantly increased the amplitude of 4AP-sensitive K(+) current, while there was no significant change in the amplitude of TEA-sensitive K(+) current. Together, our data indicate that SSa inhibits epileptiform discharges induced by 4AP in a dose-dependent manner and that SSa exerts selectively enhancing effects on I A . These increases in I A may contribute to the anticonvulsant mechanisms of SSa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced potassium currents in old rat CA1 hippocampal neurons.

Potassium currents are an important factor in repolarizing the membrane potential and determining the level of neuronal excitability. We compared potassium currents in CA1 hippocampal neurons dissociated from young (2-3 months old) and old (26-30 months old) Sprague-Dawley rats. Whole-cell patch-clamp techniques were used to measure the delayed rectifier (sustained) and the A-type (transient) p...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons.

Previous current-clamp studies in rat hippocampal slice CA1 neurons have found aging-related increases in long-lasting calcium (Ca)-dependent and Ca-mediated potentials. These changes could reflect an increase in Ca influx through voltage-gated Ca channels but also could reflect a change in potassium currents. Moreover, if altered Ca influx is involved, it is nuclear whether it arises from gene...

متن کامل

Enhanced fast synaptic transmission and a delayed depolarization induced by transient potassium current blockade in rat hippocampal slice as studied by optical recording.

In hippocampal neurons, a slowly inactivating aminopyridine-sensitive transient potassium current, D-current, influences the time course of action potential repolarization and therefore activity-dependent Ca2+ entry. We used high-speed optical recording techniques to study the effects of selectively inhibiting D-current with 4-AP (40 microM) on transmission at the Schaffer collateral (CA3)-CA1 ...

متن کامل

Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia.

CA1 pyramidal neurons are highly vulnerable to transient cerebral ischemia. In vivo studies have shown that the excitability of CA1 neurons progressively decreased following reperfusion. To reveal the mechanisms underlying the postischemic excitability change, total potassium current, transient potassium current, and delayed rectifier potassium current in CA1 neurons were studied in hippocampal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013